摘要: |
细胞色素P450酶在自然界中广泛存在,能催化多种类型的氧化反应,在有机合成和生物化工方面具有重要的应用潜力。尽管大多数P450酶通常需要辅酶和复杂的电子传递体系协助活化氧分子,一些P450酶也可以利用过氧化氢作为末端氧化剂,这极大地简化了催化循环,为P450酶的合成应用提供了一条新的简便途径。本文系统地介绍了几类过氧化氢驱动的P450酶催化体系,包括脂肪酸羟化酶P450SPα和P450BSβ、脂肪酸脱羧酶P450OleTJE、人工改造的羟化酶P450BM3和P450cam突变体、以及基于底物误识别策略的P450-H2O2体系。通过分析催化反应机制,本文探讨了P450-H2O2催化体系在目前存在的挑战和可能的解决途径,并对其进一步应用前景进行了展望。 |
关键词: 细胞色素P450酶 过氧化氢 生物化工 有机合成 催化氧化 |
DOI: |
分类号: |
基金项目: |
|
Progress in cytochrome P450 monooxygenase driven by hydrogen peroxide |
WANG Xiling,CHEN Jie,CHEN Zhifeng,ZHOU Haifeng,CONG Zhiqi,Shandong Provincial Key Laboratory of Synthetic Biology,CAS Key Laboratory of Biofuels,Qingdao Key Laboratory of Functional Membrane Material,Membrane Technology,Qingdao Institute of Bioenergy,Bioprocess Technology,Chinese Academy of Sciences
|
Shandong Provincial Key Laboratory of Synthetic Biology,CAS Key Laboratory of Biofuels,Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology,Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences,Hubei Key Laboratory of Natural Products Research and Development,College of Biological and Pharmaceutical Sciences,China Three Gorges University
|
Abstract: |
Cytochrome P450 monooxygenases are widely found in nature which can catalyze a variety of oxidation reactions and have important potentials in applications of organic synthesis and biochemical engineering.Although most of P450 enzymes generally need co-enzyme and complex electron transfer(ET)systems to activate molecular oxygen,some of them are also capable of using hydrogen peroxide as terminal oxidants,which largely simplifies the catalytic cycle of P450 sand affords a convenient way for their synthetic applications.This review systematically introduces several catalytic reactions of P450 enzyme driven by hydrogen peroxide,including fatty acid hydroxylase P450SPαand P450BSβ,fatty acid decarboxylase P450 OleTJE,and artificial hydroxylase variants of P450BM3 and P450cam,as well as substrate misrecognition strategy of P450 enzyme.We also discuss current challenges and potential solutions,as well as prospect on further applications of P450-H2O2 catalytic system. |
Key words: cytochrome P450enzyme hydrogen peroxide biochemical engineering organic synthesis catalytic oxidation |